

Transgenic expression of pattern recognition receptor EFR in tomato leads to effective field resistance to bacterial wilt

Sanju Kunwar^{1,2}, Eduardo Evaristo da Silva¹, Fanny Iriarte¹, Laura Ritchie¹, Drey Clark¹, Joshua H. Freeman^{2,3}, Robert E. Stall¹, Jeffrey B. Jones¹, Jerry Minsavage¹, Cyril Zipfel⁴, Diana Horvath⁵ and Mathews L. Paret^{1,2,*}

¹Department of Plant Pathology, University of Florida (UF), USA, ²North Florida Research and Education Center, UF, USA, ³Department of Horticulture, UF, USA, ⁴The Sainsbury Laboratory, Norwich, UK, ⁵Two Blades Foundation, Illinois, USA

Tomato production in Florida

In 2015, Florida contributed 35.15% of the total U.S fresh market tomato production with a farm value of \$453 million

Tomato varieties that are resistant to bacterial wilt

H7996

H7997

H7998

Limitations

- Resistance limited to locations, pathogen strain & temperature
- Unwanted linkage drag & negative correlation with fruit yield and quality (Chellemi et al, 1994; Grimault et al 1995)

Continuous need for alternatives to improve host resistance

Non-Grafted (BHN 602)

Grafted (BHN 602/BHN 998)

Application of Acibenzolar-S-Methyl Enhances Host Resistance in Tomato Against *Ralstonia solanacearum*

Table 3. Effect of acibenzolar-S-methyl on bacterial wilt incidence and yield of tomato cultivars BHN 466, Neptune, and Equinox under field conditions (Fall 2002, Quincy, FL)

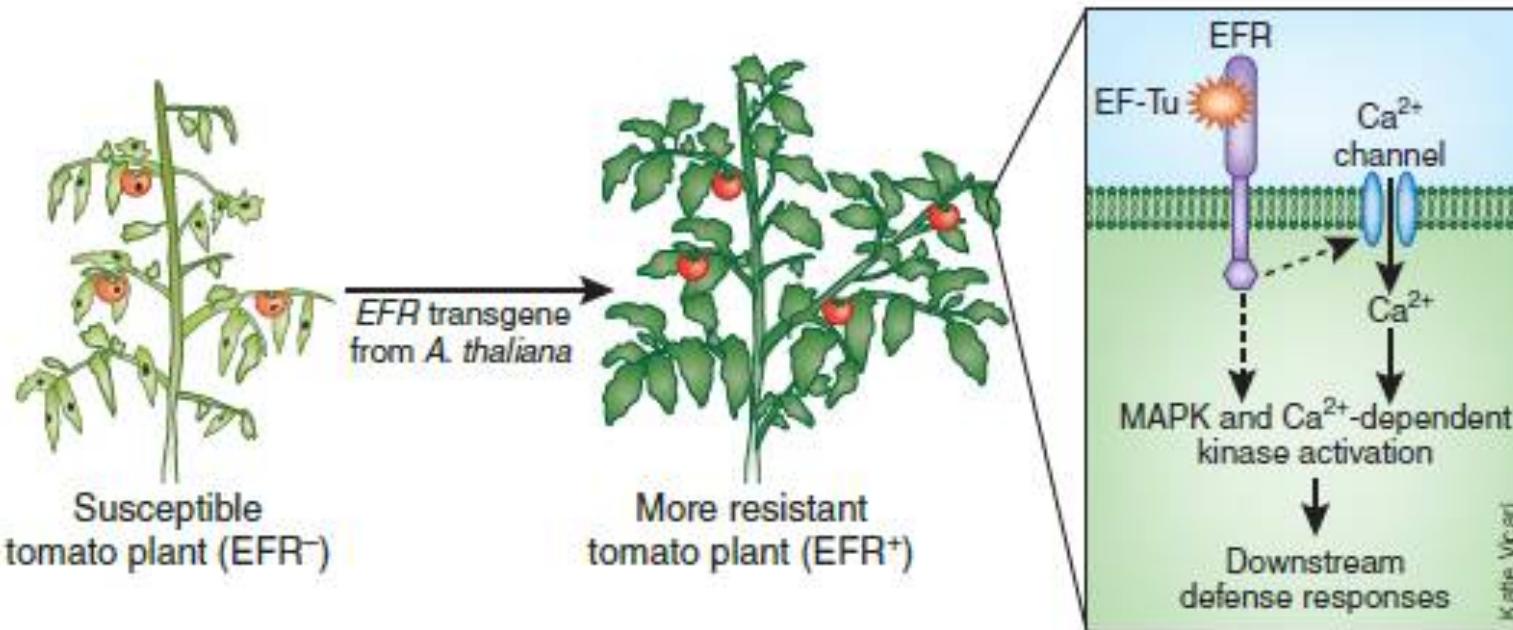

Treatment ^{w,x}	Disease incidence (%) ^y	Yield (t/ha) ^{y,z}
BHN 466 + Actigard	21 c	30.1 a
BHN 466	46 b	22.6 c
Neptune + Actigard	25 c	27.9 ab
Neptune	54 b	24.7 bc
Equinox + Actigard	100 a	0 d
Equinox	100 a	0 d

Table 4. Effect of acibenzolar-S-methyl on bacterial wilt incidence and yield of tomato cultivars FL 7514, Neptune, and FL 47 under field conditions (Fall 2003, Quincy, FL)

Treatment ^{w,x}	Disease incidence (%) ^y	Yield (t/ha) ^{y,z}
FL 7514 + Actigard	18.6 c	41.7 a
FL 7514	40.2 b	31.5 b
Neptune + Actigard	10.8 c	44.0 a
Neptune	30.4 b	39.3 ab
FL 47 + Actigard	87.3 a	7.6 c
FL 47	96.1 a	3.0 c

Interfamily transfer of a plant pattern recognition receptor confers broad-spectrum bacterial resistance

Lacombe et al. 2010

Figure 1 Engineering broad-spectrum resistance in tomato, a member of the Solanaceae, by transferring a pattern-recognition receptor from the wild species *A. thaliana* (family Brassicaceae). Elongation factor Tu receptor (EFR; purple) is absent from the solanaceous species *N. benthamiana* and tomato, and these plants are normally susceptible to infection by *Agrobacterium tumefaciens*, *Pseudomonas syringae*, *Ralstonia solanacearum* and *Xanthomonas perforans*. Transgenic expression of *A. thaliana* EFR increases their resistance to all of these bacterial pathogens, presumably by activating a signaling cascade that confers resistance to a range of bacteria expressing its cognate PAMP, elongation factor Tu (EF-Tu; orange). The successful inter-family transfer of EFR-mediated disease resistance suggests that *N. benthamiana* and tomato contain all components necessary for EFR signaling other than the receptor. MAPK, mitogen-activated protein kinase.

Brutus et al. 2010

To test the effect of **EFR** gene on bacterial wilt disease and yield of tomatoes in open field conditions

BW Field trial: Quincy, FL, Fall 2015

Entry ^w	Fruit yield (kg/ha ^y)						BW ^x incidence (%)	BW ^y severity (%)
	Small	Medium	Large	Extra Large	Total marketable	Total yield		
F18000	5,488 c ^z	6,786 b	7,673 a	4,758 a	19,217 a	24,705 b	82.49 a	71.29 a
F18000+Bs2	8,607 c	6,509 b	6,570 a	4,176 a	17,254 a	25,861 b	69.94 a	58.33 a
F18000+EFR	24,300 a	13,453 a	10,874 a	3,574 a	27,901 a	52,201 a	15.99 b	12.65 b
F18000+EFR+ BS2	13,218 b	9,640 ab	9,744 a	6,548	25,753 a	40,653 a	35.23 b	30.17 b

^wEach entry consisted of 4 reps with 14 plants/reps, and the expt. was arranged as a RCBD.

^xPercentage bacterial wilt incidence before harvest.

^yPercentage bacterial wilt severity before harvest.

^{x, y}Field was inoculated with 50 ml of 10⁵ CFU/ml of *R. solanacearum* Rs5 strain in each planting hole. The effect of the treatments on the BW incidence and severity data were analyzed separately with one-way ANOVA at P = 0.05

^zMarketable yield of tomato fruits recorded at harvest and graded according to USDA specifications. The effect of the treatments on the marketable yield were analyzed separately with one-way ANOVA at P = 0.05.

^zColumn means followed by the same letter do not differ significantly at P = 0.05 based on Least Significant Difference (LSD).

To test the effect of ***EFR* gene** on bacterial wilt disease of tomatoes
in open field conditions

BW Field trial: Quincy, FL, Fall 2016

Entry^w	BW^x incidence (%)	BW^y severity (%)
F18000	22.92 A ^z	17.19 a
F18000+Bs2	33.33 A	27.08 a
F18000+EFR	0.00 B	0.00 b
F18000+EFR+ BS2	0.00 B	0.00 b

^wEach entry consisted of 4 reps with 12 plants/reps, and the expt. was arranged as a RCBD.

^xPercentage bacterial wilt incidence (as of 28th Oct, 2016).

^yPercentage bacterial wilt severity (as of 28th Oct, 2016).

^{x, y}Field was inoculated with 50 ml of 10⁵ CFU/ml of *R. solanacearum* Rs5 strain in each planting hole. The effect of the treatments on the BW incidence and severity data were analyzed separately with one-way ANOVA at P = 0.05

^zColumn means followed by the same letter do not differ significantly at P = 0.05 based on Least Significant Difference (LSD).

FL8000 (Control)

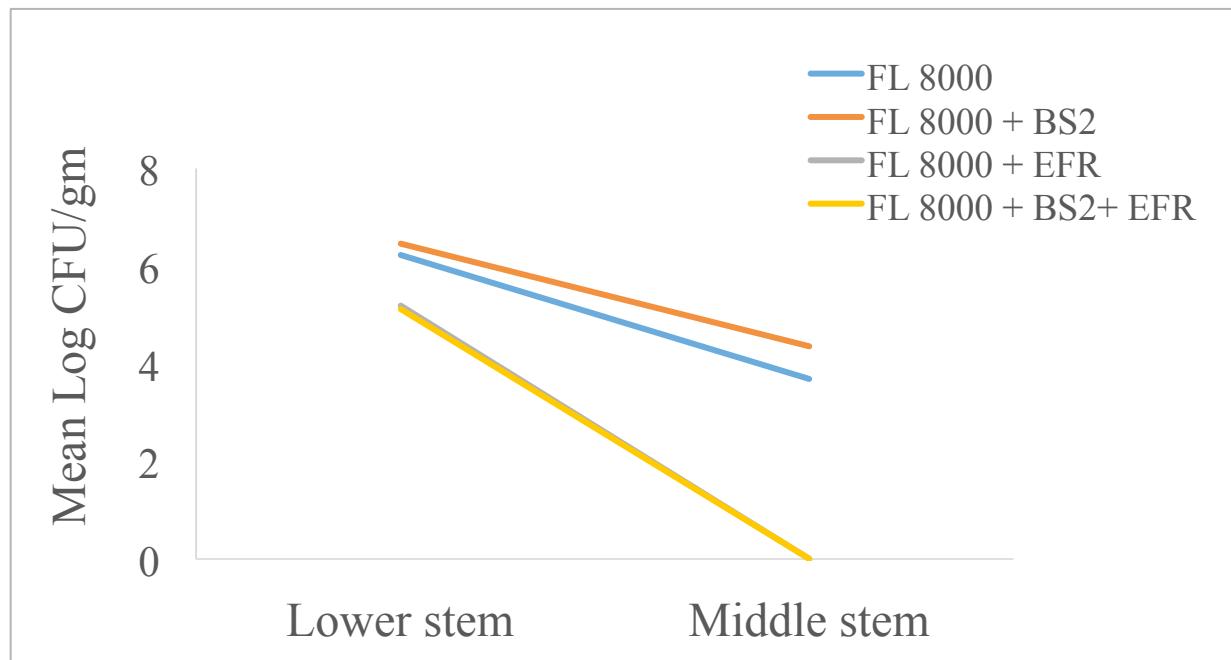
F1 8000 + BS2

F1 8000 + EFR

F1 8000 + BS2+ EFR

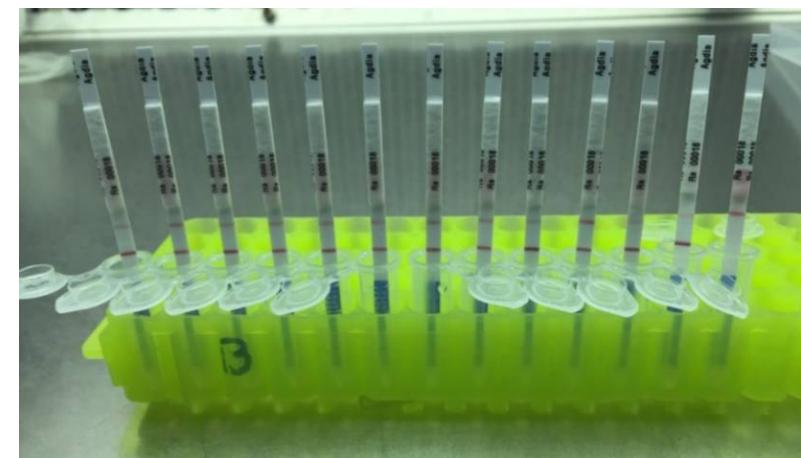

Percentage of plants from which bacteria were recovered in SMSA media after harvest
(includes both symptomatic and non-symptomatic plants).

$$\frac{\text{No of symptomatic and non-symptomatic plants from which bacteria was recovered in SMSA}}{\text{Total number of plants in that plot}} * 100 \%$$


Entry ^w	% of plants from which bacteria was recovered in SMSA media*	
	Basal stem	Middle stem
F18000	85.12 A ^z	66.07 a
F18000+Bs2	75.04 A	57.85 a
F18000+EFR	26.45 B	0.00 b
F18000+EFR+ BS2	13.38 B	0.00 b

*Middle stem and lower stems were analyzed separately.

^zThe columns with the same letter do not differ significantly based on SNK at P = 0.05


Bacterial colonization in the basal and middle stem tissue of the infected plants after harvest
(considering only those plants from which bacteria was recovered)

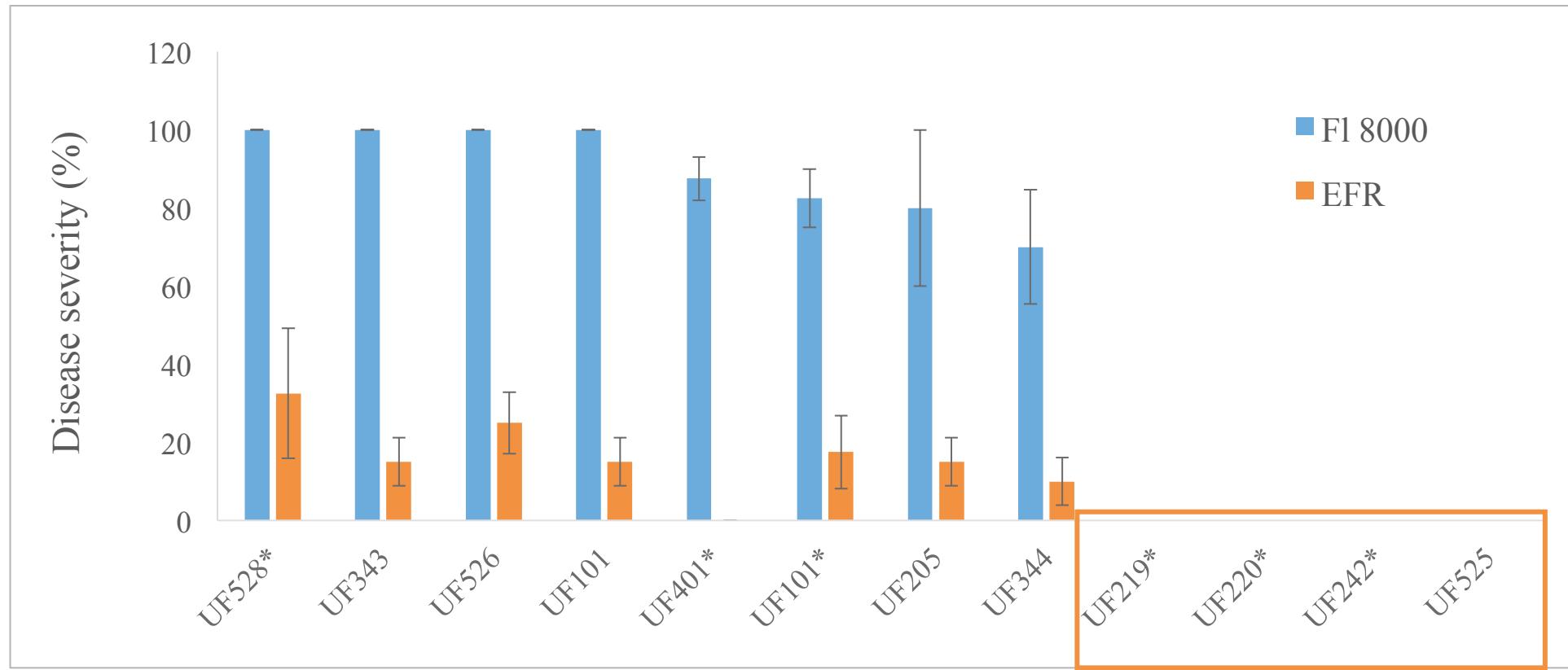
Entry	Bacterial population (Log CFU/gm tissue)	
	Basal stem	Middle stem
FL8000	6.23 ± 1.02	3.68 ± 0.44
FL8000+Bs2	6.47 ± 0.76	4.36 ± 0.90
FL8000+EFR	5.20 ± 0.63	No colony
FL8000+EFR+ BS2	5.11 ± 1.82	No colony

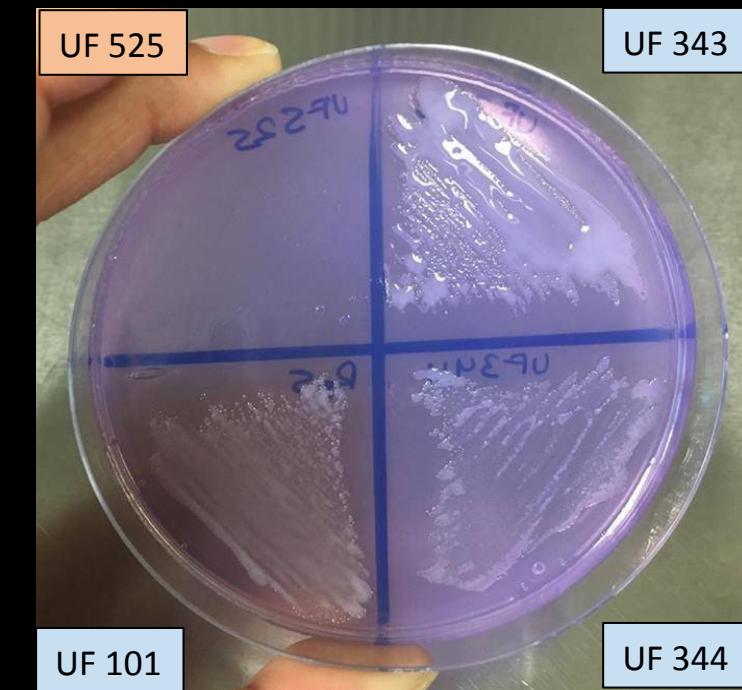
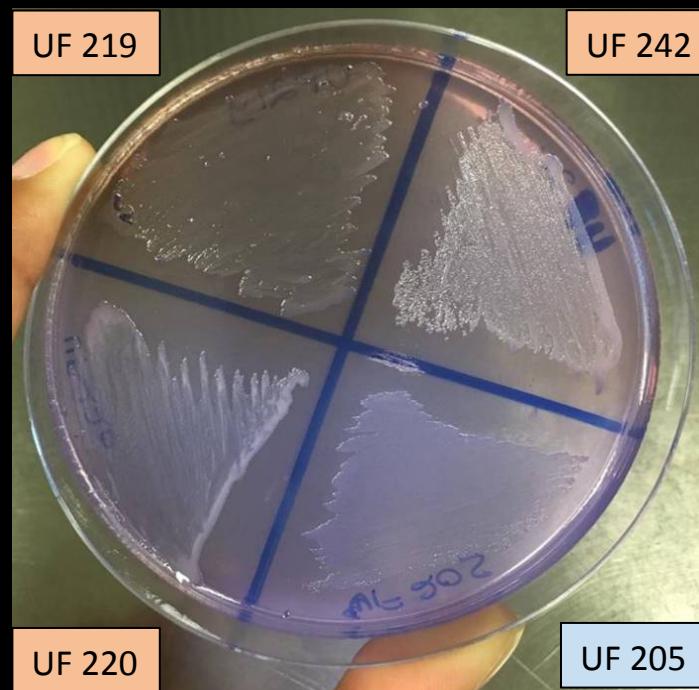
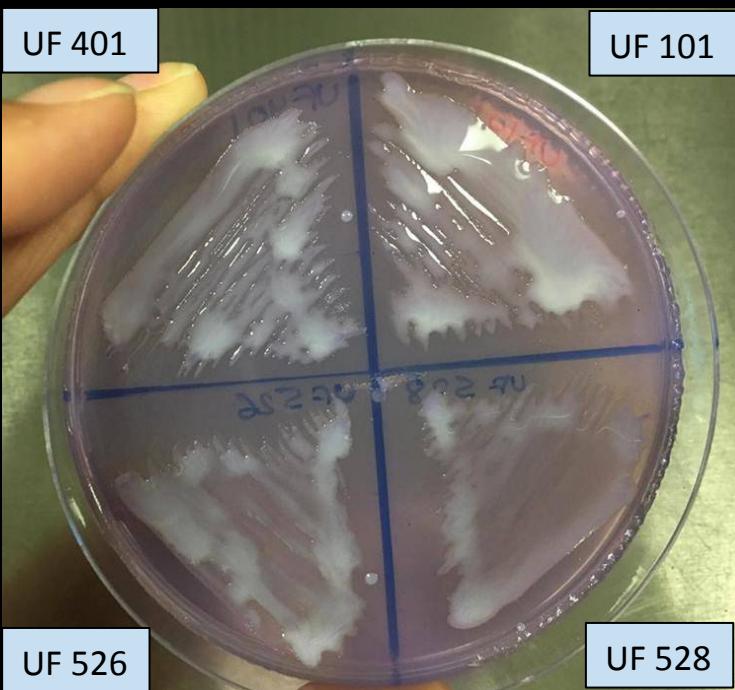
To test the transgenic *EFR* tomato line against various strains of *R. solanacearum* collected from southeast U.S.

S. No.	ID	Iso Date	Source	Location	Notes	Isolator	former ID	Multiplex/ phylotype	R3B2 630/631	HR on tobacco 24hrs	HR on tobacco 48hrs	Biovar test
1	UF101*	1999	Tomato	FL	Quincy	T. Momol	RS5	2	-	+	+	1
2	UF219	1999	Tomato	FL	Imok.	P. Robers	P576	2	-	+	+	1
3	UF220	2000	Tomato	FL	Central	D. Norman	P594	2	-	-	-	1
4	UF242		Tomato	NC		C. Allen	P 691	2	-	+	+	1
5	UF401*	1981	Tomato	GA	Rabun Co	R. Gitaitis	Rso 81-5	2	-	-	-	1
6	UF528*		Tomato	AL		M. Schel	AW1	2	-	+	+	1
7	UF205*	1996	Tomato	FL	Central	D. Norman	P507	2	-	+	+	1
8	UF343*	2005	Tomato	FL	Sun City Field 3	P. Ji	RS136	2	-	+	+	1
9	UF344*	2005	Tomato	FL	Sun City Field 4	P. Ji	RS137	2	-	+	+	1
10	UF526*	2008	Tomato	NC			K136	2	-	-	-	1
11	UF525	2008	Tomato	NC			K74	2	-	-	-	1
12	UF101*	1999	Tomato	FL	Quincy	T. Momol	RS5	2	-	+	+	1

To test the transgenic *EFR* tomato line against various strains of *R. solanacearum* collected from southeast U.S.

Seed
germination


Inoculation:
-11 strains
- 10^7 CFU/ml;
-50 ml/pot




Plant Genotypes

FL 8000

FL 8000 + EFR

To test the transgenic *EFR* tomato line against various strains of *R. solanacearum* collected from southeast U.S.

UF 101/ N. FL

UF 401/GA

UF528/ AL

UF 242/ NC

UF 219/ S. FL

UF 220/ C. FL

UF 526/ NC

UF 205/ C. FL

UF 343/ C. FL

UF 344/ C. FL

UF 101/ N. FL

UF 525/ NC

Potential impacts

- *EFR* transgenic tomato lines: rapid gene transfer, no negative effect on yield, minimal risk of transgene escape.
- PRR proteins like *EFR* work by recognizing PAMPs (highly conserved in microbes; less prone to mutation) offering more durable resistance in the field compared to R-gene based resistance which can break down rapidly in the field due to frequent mutation in effectors. Therefore, it offers possibility for universal applicability against bacterial wilt of tomato worldwide.
- The transgenic line containing both *EFR* and *Bs2* genes together may provide durable field resistance against bacterial wilt and bacterial spot of tomato, two of the important tomato disease in Florida and worldwide.

Acknowledgement

Advisory committee

- Mathews Paret
- Jeff Jones
- Joshua. H. Freeman

- Diana Horvath

- Cyril Zipfel

Phytobacteriology lab, UF

- Robert E. Stall
- Jerry Minsavage

NFREC

- Eduardo Evaristo da Silva
- Laura Ritchie
- Fanny Iriarte
- Drey Clark\
- Qiurong Fan
- Nghi Nguyen
- Farm crew members

**THE STORKAN-HANES-McCASLIN
RESEARCH FOUNDATION**

Thank you

